Supplier Spotlight

Video Exclusives

McLaren details the 4.0-liter V8 Senna

Megane R.S Video

Ahead of it public debut at the Geneva International Motor Show next month, McLaren has released further information on the Senna. Fitted with a 4.0-liter twin-turbocharged V8 – McLaren’s most powerful IC engine ever produced for a road car – the limited release hypercar will develop 800ps and 800Nm.

Ford Ranger returns to the USA with a 2.3-liter EcoBoost engine


Fitted with the 2.3-liter EcoBoost engine taken from the Focus RS, the 2019 Ford Ranger marks the OEM’s return to America’s mid-size truck segment. Paired with a 10-speed automatic transmission, Ford promises torque comparable to a V6 and the efficiency of a four-cylinder.

Click here/on image to watch video

The next issue of Engine Technology International will bring you an extended HCCI technology feature, but will this innovative powertrain development ever jump from concept to mainstream production?

Web Exclusives

« back to listing

Overcoming hydrogen fuel's chicken-and-egg conundrum is a question of purity

Dr Arul Murugan, senior research scientist at NPL in The Gas and Particle Metrology Group, explains how the industry can overcome the chicken-and-egg conundrum that currently faces hydrogen fuel


The hydrogen economy is at a tipping point. For decades the technology has been explored and developed, especially within the automotive market where many leading manufacturers have developed concept cars and technology showcasing hydrogen's potential as a future fuel. It has now reached a point where hydrogen vehicles can be seen on the roads, with hydrogen-fuelled buses being deployed in cities around the world.

However, the car industry has yet to fully embrace the technology thanks to a chicken-and-egg conundrum. People are not buying hydrogen cars because the re-fuelling infrastructure to support them is not in place, and the infrastructure is not being built because there is not enough public demand for the cars. Given hydrogen's potential to offer a zero emission fuel source, if the fuel is generated via renewables, there needs to be a concerted effort to break this cycle. There are projects working on this, such as the European-organised HyFive project to validate performance and capability with BMW, Daimler, Honda, Hyundai and Toyota. However, there is a more fundamental, industry wide issue that needs to be confronted if hydrogen re-fuelling infrastructure is to be successfully implemented.

Impurities in fuel can degrade the engines that use it. This is no different for hydrogen cars. Hydrogen fuel cells can be damaged significantly by impurities. This results in these cars failing after a relatively short time, far sooner than a normal, fossil-fuelled car. To counter this, guidelines for acceptable hydrogen purity have been laid out in International Standard ISO 14687, which outlines the maximum allowable impurity levels. EU directive 2014/94/EU also states that all refuelling stations must comply with these thresholds.


One could therefore think that the job is done. We know the limits by which fuel impurities should be kept at, so manufacturers and consumers can now have confidence that the fuel going into cars will be of sufficient quality. Unfortunately, this is only half the job. Knowing the levels to stick to is one thing, but how do you prove that the hydrogen purity complies with the standard? What measurements do you need to carry out and how? And how can we be sure that all hydrogen purity laboratories are providing results that are truly stable, comparable and accurate? This is where the hydrogen industry is currently faltering and is an area that the National Physical Laboratory (NPL), the UK's National Metrology Institute, is working to bring clarity to by providing measurements that are traceable to the internationally accepted SI system of units.

What is required is an accredited method of impurity measurement at the hydrogen fuel pumps that is traceable back to the SI system of units. In particular the challenge is to accurately measure the low level of impurities specified in the ISO standard. The oil and gas industry has this already, with the ISO 3170 and 3171 methods outlining sampling method for petroleum products . NPL is developing a suite of analytical methods for testing the purity of hydrogen fuel, using an enrichment device to concentrate the impurities to enable analysis to be performed using commercial gas chromatographs. All developed methods will be validated using primary reference gas mixtures that are directly traceable to the SI system of units, providing confidence in the measurements. Once this standard protocol is in place, NPL will be able to perform accredited hydrogen purity testing for refuelling stations and also provide traceability for all hydrogen purity laboratories to ensure that impurity measurements taken from refuelling stations will be of an approved standard, laying the foundations for a trusted fuel supply chain.

Overcoming this issue will give manufacturers and consumers the necessary trust that ISO 14687 is being followed and that their cars will perform as intended. It will also allow the hydrogen infrastructure to expand as developers of these technologies will know the standards and processes they will have to meet. 

Hydrogen offers great advances in low-carbon transport, but it is only by solving the fundamental barriers, like standardizing fuel purity, that we can ensure that it lives up to its potential.

April 1, 2016


1 April 2016


Your email address:

Read Latest Issue

International Engine of the Year Awards
Read Latest Issue
Read Latest Issue

Web Exclusive Articles

Mazda reaffirms its commitment to the IC engine
“We’ll create the first HCCI engine and be the last with BEVs,” said Kenichiro Saruwatari, vice president of R&D at Mazda Europe, at the 2016 Geneva motor show. While HCCI technology is just around the corner two years later, Mazda has reiterated that it has no plans for battery electric vehicles. 
Read Now

Mahle Powertrain reveals how it supports powertrain development amid tightening regulations
As RDE regulations begin to take effect and OEMs look to reduce the emissions and increase efficiency of their vehicles, Mahle has invested US$11.2m in an all-new state-of-the-art facility devoted to real-life vehicle optimization
Read Now

WMG details the graphene battery technology that could double EV battery life
When Fisker relaunched two years ago the company’s namesake CEO promised graphene-based supercapacitor technology in its first car. But while the battery technology didn’t come to fruition, Warwick Manufacturing Group (WMG) has utilized graphene to potentially double an EV battery’s lifecycle.
Read Now

Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the engine technology industry. Want to see your company included? Contact for more details.

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the engine technology community? We'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email