Supplier Spotlight

Video Exclusives

McLaren details the 4.0-liter V8 Senna

Megane R.S Video

Ahead of it public debut at the Geneva International Motor Show next month, McLaren has released further information on the Senna. Fitted with a 4.0-liter twin-turbocharged V8 – McLaren’s most powerful IC engine ever produced for a road car – the limited release hypercar will develop 800ps and 800Nm.

Ford Ranger returns to the USA with a 2.3-liter EcoBoost engine

ecoboost_video

Fitted with the 2.3-liter EcoBoost engine taken from the Focus RS, the 2019 Ford Ranger marks the OEM’s return to America’s mid-size truck segment. Paired with a 10-speed automatic transmission, Ford promises torque comparable to a V6 and the efficiency of a four-cylinder.


Click here/on image to watch video

The next issue of Engine Technology International will bring you an extended HCCI technology feature, but will this innovative powertrain development ever jump from concept to mainstream production?

Web Exclusives

« back to listing

New long route exhaust gas recirculation turbocharger

Cummins has developed a highly durable system for commercial vehicle applications was developed using a multifaceted approach to testing and analysis

 

Exhaust gas recirculation technologies offer significant benefits in reducing vehicle emissions. Long route EGR also decreases vehicle fuel consumption when compared with short route EGR. The new turbocharger, designed by Cummins, was developed for commercial vehicle applications where the durability requirements are particularly high.

“Although this type of technology is widely used in passenger cars, in a commercial vehicle it’s very difficult to introduce due to the durability requirements and the long-term effects of the corrosion and erosion environment that is observed in the turbocharger compressor stage,” explains Dr Michael Burkinshaw, group leader of tribology and advanced processing at Cummins Turbo Technologies. 

Development, which took around four years, adopted a materials science-based approach. “We believe this is the best method because it enabled us to understand certain results in a laboratory environment and learn why some solutions wouldn’t work on the turbocharger, which is more efficient than developing the turbocharger system, identifying the failures and then investigating why those are occurring.”

Potential materials and surface treatments were selected – including untreated aluminum alloy impeller and compressor cover material concepts as well as surface treatments such as anodizing, plating and polymeric-based coatings – and characterized in terms of their durability and consistency of performance in long route EGR environments.

“The next stage was to try and understand how we would test these materials and surface treatments in a range of environments. Once we had established a myriad of test conditions and conducted such experiments, we performed analysis using different techniques and subsequently employed a cause and effect matrix, which enabled us to establish the best solutions and do more specific tests.”

Test coupons replicating the microstructure, mechanical properties and topography of the deck of the impeller and compressor cover volute were created. Evaluation in the lab was conducted using a combination of rig and prototype testing and focused on thermal shock, corrosion, erosion, aerodynamic performance and fatigue. The test samples were analyzed using high resolution microscopy, chemical analysis and interferometry techniques.

“In some tests we knew what we were aiming for but in others that were new to us, such as the corrosion tests, we had to do a comparison in order to understand the benefits of the treatment,” Burkinshaw says. “We learned after initial corrosion tests and discussions with our customers, that we needed to understand corrosion behavior of concepts when subject to a much broader range of condensate pHs and chemistry. As a result of the comprehensive testing, we’re now able to provide our customers with a wide condensate pH and chemistry operating window in which our technology can durably work.”

An anodise surface treatment was identified as the best performing concept for the impeller (above). Two respective surface treatments, namely a spray and a plating, were identified as the best performing concepts for the compressor cover (top). Having already received positive feedback from customers, the technology is now in the final prototype stages for adoption in future commercial engine applications.

 

24 June 2016

RECEIVE THE
LATEST NEWS


Your email address:



Read Latest Issue

International Engine of the Year Awards
Read Latest Issue
Read Latest Issue

Web Exclusive Articles

Mazda reaffirms its commitment to the IC engine
“We’ll create the first HCCI engine and be the last with BEVs,” said Kenichiro Saruwatari, vice president of R&D at Mazda Europe, at the 2016 Geneva motor show. While HCCI technology is just around the corner two years later, Mazda has reiterated that it has no plans for battery electric vehicles. 
Read Now

Mahle Powertrain reveals how it supports powertrain development amid tightening regulations
As RDE regulations begin to take effect and OEMs look to reduce the emissions and increase efficiency of their vehicles, Mahle has invested US$11.2m in an all-new state-of-the-art facility devoted to real-life vehicle optimization
Read Now

WMG details the graphene battery technology that could double EV battery life
When Fisker relaunched two years ago the company’s namesake CEO promised graphene-based supercapacitor technology in its first car. But while the battery technology didn’t come to fruition, Warwick Manufacturing Group (WMG) has utilized graphene to potentially double an EV battery’s lifecycle.
Read Now


Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the engine technology industry. Want to see your company included? Contact aboobaker.tayub@ukimediaevents.com for more details.

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the engine technology community? We'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to d.slavnich@ukimediaevents.com

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email aboobaker.tayub@ukimediaevents.com