Supplier Spotlight

Video Exclusives

Mercedes-Benz unveils its revamped G-Class

gtr

The all-new G-Class makes its public debut at the Detroit auto show in G550 form. Completely redeveloped and fitted with a 4.0-liter V8 biturbo gasoline engine offering 427ps and 450 lb-ft of torque at 2,000rpm to 4,750rpm, despite near-identical looks to its predecessor plenty has changed for the Mercedes-Benz SUV.


Ford’s F150 pickup gets its first diesel motor

gtr

Developed by the powertrain team behind the 6.7-liter Power Stroke engine for super duty trucks, the all-new 3.0-liter V6 Power Stroke unit promises 250ps, 440 lb-ft of torque, and an anticipated 5175kg of towing capacity.


Click here/on image to watch video

In light of Fisker's solid-state battery breakthrough and claims of a one minute charge time, will this electric vehicle technology development kick-start mass BEV uptake? 

Web Exclusives

« back to listing

Toyota expands R&D in to extending EV range

As one of the pioneers of the hybrid movement, Toyota outlines its continued efforts in the research and development of improved battery range

 

A longer battery life and an extended driving range on a full charge are key factors in making electric vehicles (EVs) a practical and attractive proposition for motorists looking to switch to cleaner, alternative fuels. Toyota has produced a world-first technique for observing laminated cells by using high-intensity X-rays, which it is hoped can help in the research and development of future lithium-ion batteries that better meet these requirements.

It has produced a technical method for observing how lithium ions behave in an electrolyte in a lithium-ion battery (like that used in the Toyota Prius+ and Prius Plug-in Hybrid), both when the battery is being charged and discharging power. It allows real-time observation of the deviation of lithium (Li) ions – one of the causes of deterioration in battery performance.

Using intelligence gained from this process, Toyota believes essential guidelines can be drawn up to help in the research and development of batteries with improved performance and durability, leading to longer battery life and driving ranges for plug-in hybrid and electric vehicles.

How it works
Li-ion batteries use a metal oxide in the cathode, a carbon material in the anode and an organic electrolyte. Lithium ions flow in the electrolyte from the cathode to the anode when the battery is charging, and from the anode to the cathode when the battery is discharging, which results in an electric current flow. Thus, the Li ions play an essential role during battery charging and discharging.

It has been known that Li ion deviation occurs in the electrodes and electrolyte as a result of charging and discharging. It has been believed that such deviation limits the usage area of batteries, one factor that reduces the area in which the maximum performance of the battery can be achieved. When investigating the mechanism of Li ion deviation, however, confirming the behaviour of Li ions in the electrolyte under the same environment and conditions as when it is being used in related products has not been possible using existing techniques.

The two main features of the observation technique that Toyota has developed to help solve this problem are: –

  1. The Toyota beamline in the SPring-8 synchrotron radiation facility, which generates the world’s highest-performance synchrotron radiation, produces high-intensity X-rays that are approximately one billion times more powerful than those generated by X-ray equipment. This makes it possible to create 0.65-micron/ pixel high-resolution and 100ms/ frame high-speed measurements.
  2. In place of the electrolyte with phosphorous that is used in many Li-ion batteries, a new electrolyte with heavy elements is being used instead, thus replacing the phosphorous-containing ions that the Li ions bind to as they move in the electrolyte with heavy element-containing ions. Heavy elements transmit fewer of the X-rays than phosphorous, and the shadows on the images taken after the X-rays pass through are darker. By observing the behaviour of the heavy elements, it is possible to observe the deviation behaviour of the Li ions which are bound to them in the electrolyte.

By using the technique described above, and a battery that is similar to that of related products, such as laminated cell, under the environment and conditions that resemble those of actual battery use, it is possible to observe in real-time, the process of Li ion deviation that occurs in electrolytes during the course of battery charging and discharging. This observational technique was jointly developed by Toyota Central R&D Labs, Inc., Nippon Soken, Inc., as well as Hokkaido, Tohoku, Kyoto, and Ritsumeikan Universities.

Going forward, Toyota will observe the behaviour of Li ions caused by differences in the materials and structures of cathodes, anodes, separators, and electrolytes, as well as the differences in battery control. Analysing the mechanisms that cause deterioration of battery performance will lead to R&D that can help to improve the performance and durability of batteries, to bring about longer battery life and longer driving ranges.

 

28 November 2016

RECEIVE THE
LATEST NEWS


Your email address:





Read Latest Issue
International Engine of the Year Awards
Read Latest Issue
Read Latest Issue

Web Exclusive Articles

Hyundai 2019 Veloster N: The Knowledge
Designed specifically for the US market and officially unveiled at the 2018 Detroit auto show this month, Hyundai’s 2.0-liter turbocharged Veloster N has been developed to deliver driveability rather than outright performance statistics.
Read Now

Renault Trucks reveals how mixed reality can improve engine quality control
Renault Trucks, in collaboration with Immersion, is evaluating the potential of mixed reality to deliver a new, faster and more reliable quality control process at its Lyon engine manufacturing site.
Read Now

BAIC Motor on the industry’s fuel economy performance ambitions
BAIC has teamed up with Siemens to implement vehicle energy management and model-based systems engineering as the Chinese OEM works towards optimal fuel efficiency
Read Now


Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the engine technology industry. Want to see your company included? Contact aboobaker.tayub@ukimediaevents.com for more details.

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the engine technology community? We'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to d.slavnich@ukimediaevents.com

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email aboobaker.tayub@ukimediaevents.com